Lidar Sensor – Future Data Collection Process

P.M. – Andrea Hodge Transportation Statistics Office, Florida DOT

P.I. – Carl Crane Dept. of Mech. & Aero. Engr., UF

UF Background

- autonomous vehicle systems
 - model the environment (lidar & vision)
 - determine appropriate vehicle behavior

Overall Project Goal

- Can the Roadway Characteristics Inventory (RCI)
 process be made more efficient and cost effective by
 collecting and interpreting lidar point cloud data?
- 18 month project, \$150K

Task List

- Task 1 Perform a literature review of other state departments of transportation use of Lidar for data collection.
- Task 2 Compare and contrast existing LiDAR units/systems and decide which unit/system will be the best for FDOT.
- Task 3 Speak with District data collectors and data collection managers to set the benchmark for time, costs, safety, consistency of data collection, and return on investment as it exists today.
- Task 4 Use a LiDAR unit to collect RCI data then compare its time, cost, safety, consistency of data collection, and return on investment to each Distr
- Task 5 Determine the feasibility of FDOT to perform in-house LiDAR collection and RCI feature extraction.
- Task 6 Prepare draft and final report.
- Task 7 Final report.

Task 1 – Literature Review

- identified 31 papers and reports that are related to sensor based data collection
 - several lidar cases had data taken from the air
 - some papers concluded that lidar data provided a higher than necessary level of detail and that other less costly alternatives existed (vision)
 - several papers described combining lidar and vision
 - FDOT District 4 paper published in 2013 was very relevant
 - vision and lidar data collected in the field and analyzed manually in the office
 - collection process was simplified and collection times were improved
 - analysis time took too long and made the effort not economical

Task 1 – Literature Review, Conclusions

- Lidar sensors generate an abundance of data. A typical sensor can collect approximately 50 MB of data in 1 minute. Structuring this data so that it can be processed and managed efficiently is a challenging problem.
- The accuracy of range data varies between sensor models. A point cloud generated by a sensorwhose range values are within ±1 cm will be much easier to analyze than a point cloud generated by a sensor with a range accuracy of ± 3 cm.
- The position and orientation accuracy for a mobile sensor is very important.
 GPS and inertial sensors must accurately report the correct sensor position so that data points can be accurately merged.
- Characterization of objects in the point cloud is a difficult problem. Most researchers have used random seed points to begin point grouping.

Task 1 – Literature Review, Conclusions

- Cost, both personnel and hardware, is not discussed in most of the references with the exception of the District 4 report.
- Upon reviewing the literature, a system combining vision and lidar may be best able to classify highway features. A combination of color information from the vision sensor and range and reflectance data from the lidar may result in a more robust feature classification algorithm.

Task 3 – District Meetings

Visits

- District 6 Ft. Lauderdale, 13 July
- District 4 Miami, 14 July
- District 3 Chipley, 18 July

Discussion

- measurement accuracy
- feature extraction is key
- important features
 - sidewalks, medians, intersections, shoulders, curbing, thru lanes, turn lanes
- test sections of highway identified

Administrative Features (22)		Operati	Operational Features (13)	
111	State Road System	311	Speed Limits	
112	Federal System	312	Turning Restrictions	
113	AASHTO	313	Parking	
114	Local System	320	Mile Marker Signs	
118	HPMS	322	Signals	
119	HPMS Universe	323	School Zones	
120	Typeroad	326	Traffic Monitoring Sites	
121	Functional Classification	330	Traffic Flow Break Station	
122	Facility Classification	331	Traffic Flow Breaks	
124	Urban Classification	341	Lighting System	
125	Adjacent Land Classification	351	Motorist Aid System	
137	Maintenance Area Boundary	360	Toll Plazas	
138	Roadway Realignment	361	Service Plazas	
139	New Alignment			
140	Section Status Exception	Physica	l Features (26)	
141	Stationing Exceptions	212	Thru Lanes	
142	Managed Lanes	213	Auxiliary Lanes	
143	Associated Station Exception	214	Outside Shoulders	
144	Fla. Intrastate Hwy System	215	Median	
145	Level of Service Input Data	216	Bike Lanes/Ped Sidewalk	
146	Access Management	217	Sidewalks	
147	Strategic Intermodal System	219	Inside Shoulders	
		220	Non Curve Intersection Point	
Mainter	nance Features (17)	221	Horizontal Curve	
411	Roadside Mowing	230	Surface Description	
412	Weed Control	232	Surface Layers	
413	Landscape Area	233	Base	
421	Roadside Ditch Cleaning	241	Crossdrains	
422	Median Ditch Cleaning	242	Storm Sewers	
431	Parks and Rest Areas	243	Off Roadway Areas	
443	Delineators	245	Roadside Ditches	
451	Striping	248	Outfall Ditches	
452	Symbols and Messages	251	Intersection	
453	Cross Walks	252	Interchanges	
454	Stop Bars	253	Railroads	
455	Raised Pavement Markers	256	Turnouts	
456	Retroreflectivity Measurement	257	Crossovers	
457	Retroreflectivity Parameters	258	Structures	
460	Attenuators	271	Guardrail	
480	Highway Signs	272	Fencing	
481	Highway Maint. Classification	275	Misc. Concrete Structures	

Rail Line (1) 901 Rail Line Facility

Scope:

Administrative Features (22)				
111	State Road System			
112	Federal System			
113	AASHTO			
114	Local System			
118	HPMS			
119	HPMS Universe			
120	Typeroad			
121	Functional Classification			
122	Facility Classification			
124	Urban Classification			
125	Adjacent Land Classification			
137	Maintenance Area Boundary			
138	Roadway Realignment			
139	New Alignment			
140	Section Status Exception			
141	Stationing Exceptions			
142	Managed Lanes			
143	Associated Station Exception			
144	Fla. Intrastate Hwy System			
145	Level of Service Input Data			
146	Access Management			
147	Strategic Intermodal System			
	,			
Mainte	Maintenance Features (17)			
411	Roadside Mowing			
412	Weed Control			
413	Landscape Area			
421	Roadside Ditch Cleaning			
422	Median Ditch Cleaning			
431	Parks and Rest Areas			
443	Delineators			
451	Striping			
452	Symbols and Messages			
453	Cross Walks			
454	Stop Bars			
455	Raised Pavement Markers			
456	Retroreflectivity Measurement			
457	Retroreflectivity Parameters			
460	Attenuators			
480	Highway Signs			
481	Highway Maint. Classification			

Operati	ional Features (13)
11	Speed Limits
12	Turning Restrictions
13	Parking
20	Mile Marker Signs
22	Signals
23	School Zones
26	Traffic Monitoring Sites
30	Traffic Flow Break Station
31	Traffic Flow Breaks
41	Lighting System
51	Motorist Aid System
60	Toll Plazas
61	Service Plazas

Physical Features (26)

Filysical Features (20)				
212	Thru Lanes			
213	Auxiliary Lanes			
214	Outside Shoulders			
215	Median			
216	Bike Lanes/Ped Sidewalk			
217	Sidewalks			
219	Inside Shoulders			
220	Non Curve Intersection Point			
221	Horizontal Curve			
230	Surface Description			
232	Surface Layers			
233	Base			
241	Crossdrains			
242	Storm Sewers			
243	Off Roadway Areas			
245	Roadside Ditches			
248	Outfall Ditches			
251	Intersection			
252	Interchanges			
253	Railroads			
256	Turnouts			
257	Crossovers			
258	Structures			
271	Guardrail			
272	Fencing			
275	Misc. Concrete Structures			

Rail Line (1) 901

Rail Line Facility

Task 2 – Survey of Lidar Units

 Is there a suitable lidar unit in the price range of \$8-9K that can acquire sufficient data for RCI?

Equipment

inclination and magnetic sensors

Velodyne 'puck' lidar

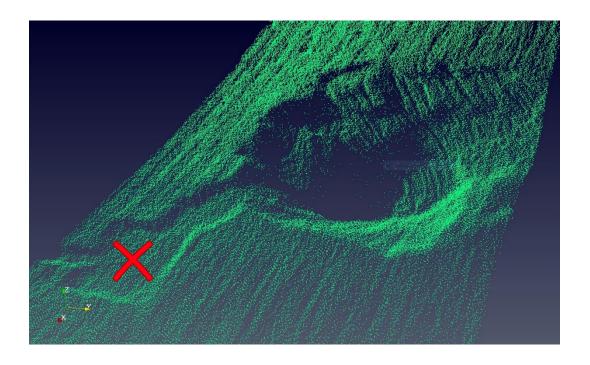
VLP-16

Sensor:

- Time of flight distance measurement with calibrated reflectivities
- 16 channels
- Measurement range up to 100 meters
- Accuracy: +/- 3 cm (typical)
- Dual returns
- Field of view (vertical): 30° (+15° to -15°)
- Angular resolution (vertical): 2°
- Field of view (horizontal/azimuth): 360°
- \bullet Angular resolution (horizontal/azimuth): 0.1° 0.4°
- Rotation rate: 5 20 Hz
- Integrated web server for easy monitoring and configuration

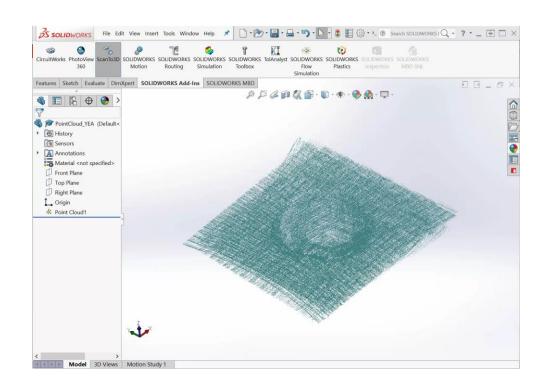
Schedule

- 14 May: pre-survey of site 1
- 17 May: post-survey of site 1; pre-survey of site 2
- 25 May: post-survey of site 2

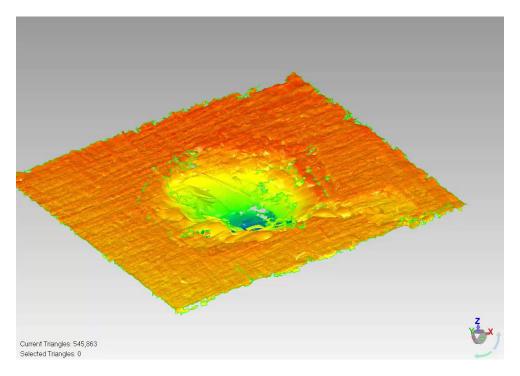


Post-survey of site 1

Scans performed from three vantage



Site 1: Three data sets merged (cloud compare)



Site 1: Merged point cloud imported to SolidWorks

Attempt to mesh (geomagic trial software)

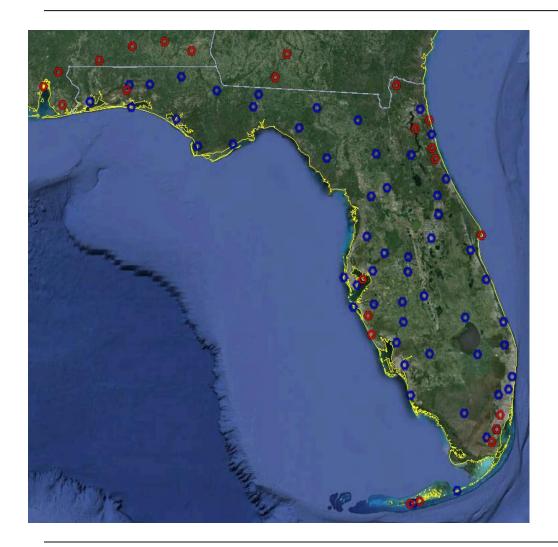
problem with filling all holes to obtain a 'water tight' surface

Task 2 – Survey of Lidar Units

- cost constraint is \$8.5K
- will run preliminary tests on two units before making recommendation to purchase

Velodyne VLP-16

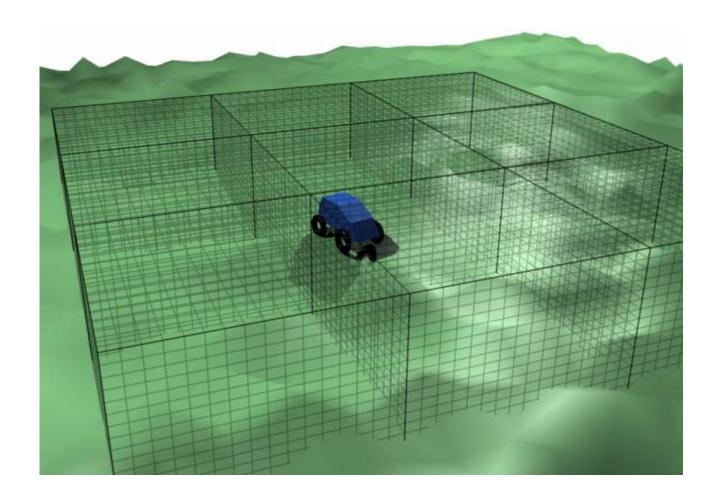
Sick LMS-100



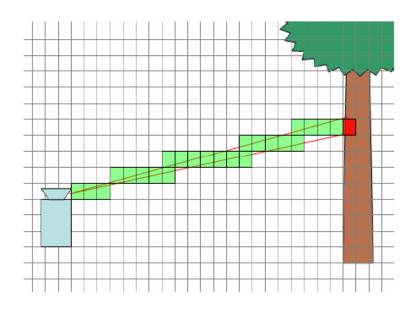
Task 4 – Data Collection & Interpretation

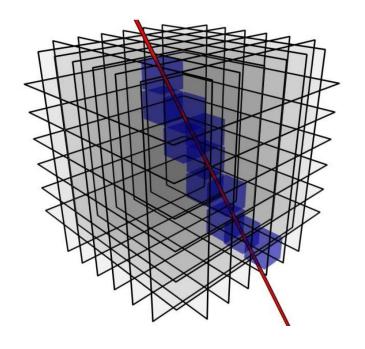
- acquire lidar unit
- design data acquisition apparatus
 - require accurate position and orientation data
- data storage and interpretation

Florida Permanent Reference Network (FPRN)


RTK data corrections augment GPS to give cm level accuracy.

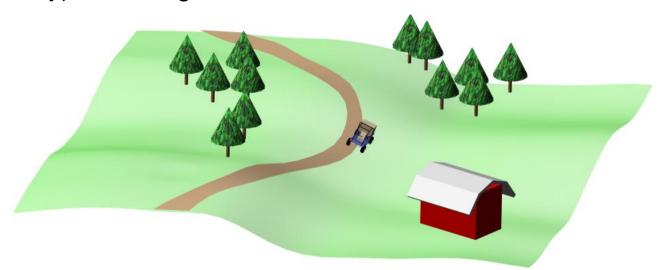
Low cost GPS (~\$200) combined with this system will replace \$8K GPS with \$1.5K annual subscription.


Voxel Based Data Representation

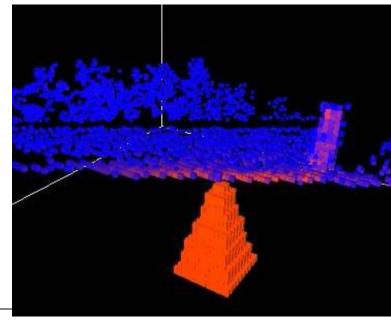


Voxel Occupancy

- A 3-D version of Bresenham's line function is used to determine all the cells through which a line segment passes.
- Occupancy of free space voxels are decremented.
- Occupancy of object voxels are incremented.

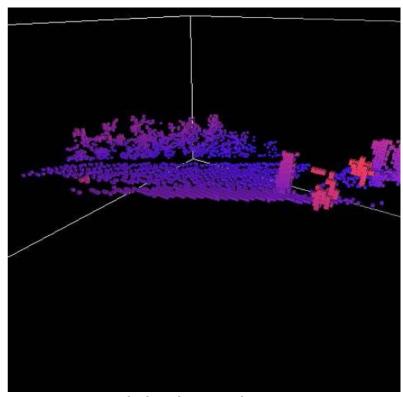


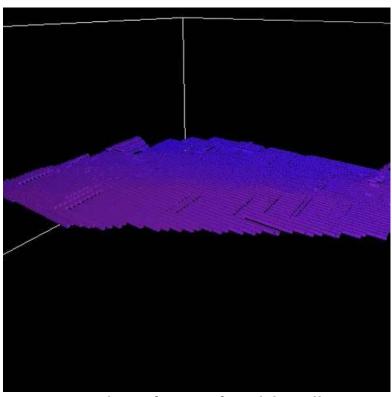
Implementation – Identify Ground Surface


- Identifying the voxels that make up the ground surface is critical.
- It can be assumed that there will be no occupied voxels below a ground surface voxel.
- Also, since no beams can penetrate below the ground surface, there should be no voxels with a free space value (known zero occupancy) below a ground surface voxel.

Identify Ground Surface

- Candidate ground surface voxels are evaluated one at a time.
- A pyramidal region of a certain depth and slope is defined below the candidate voxel.
- While searching through the pyramid, if
 - an occupied voxel or known free space voxel is found within it, the voxel fails the ground surface test
 - otherwise, the candidate voxel is marked as being part of the ground surface.

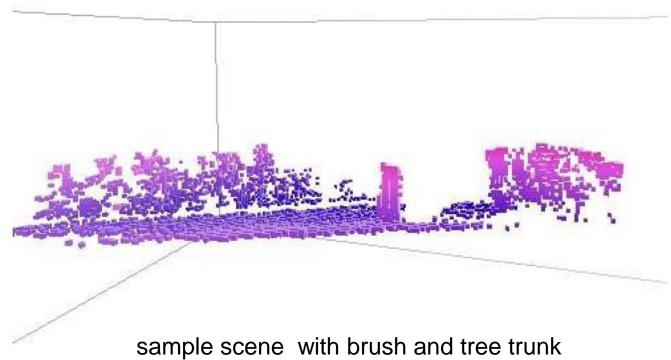


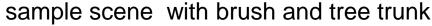

Center for Intelligent Machines and Robotics
College of Engineering

Implementation

Identify Ground Surface

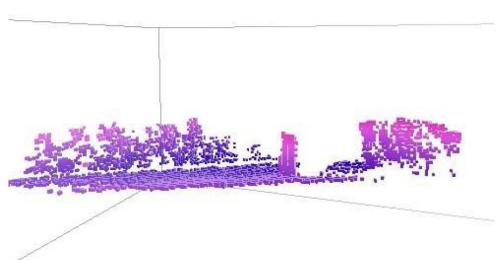
original voxel scene

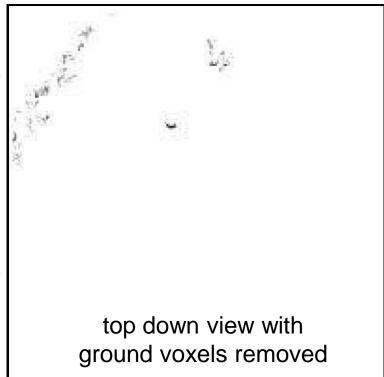



ground surface after blending

Implementation

Estimate object heights; Identify Tree Trunks




Implementation

Estimate object heights; Identify Tree Trunks

create above ground density plot

- 2D array
- each array position stores the number of voxels occupied above ground

Sample Data Set – Dynamic Case

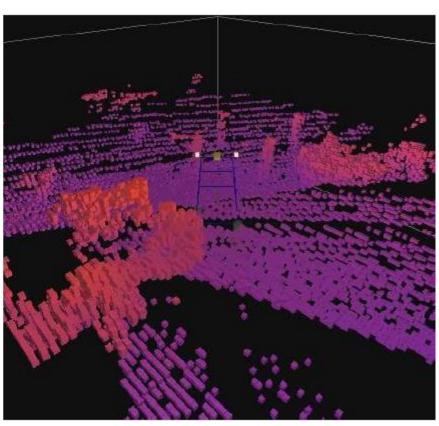
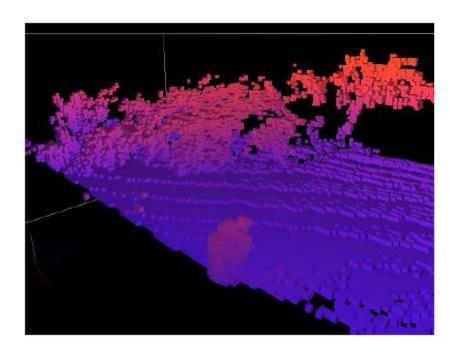
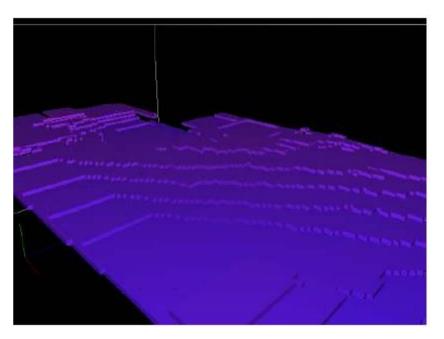
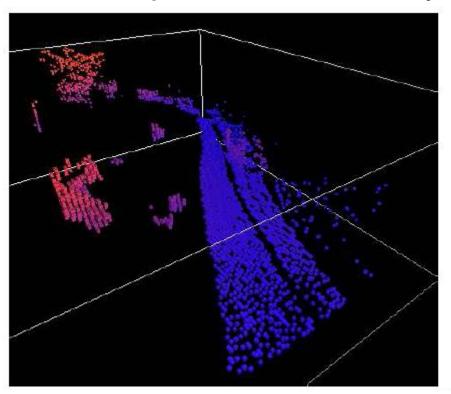
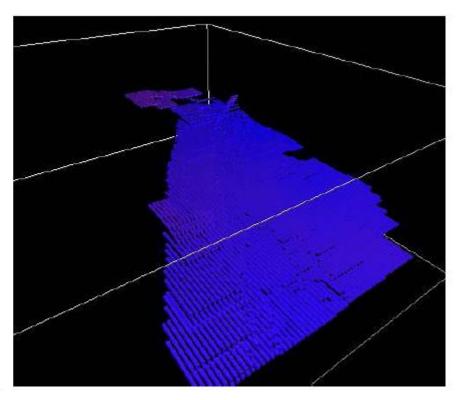




image & snapshot of the voxel data taken at the same time

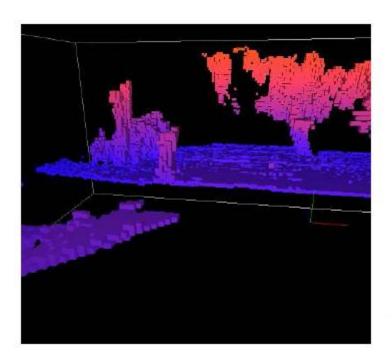
Sample Data Set – Dynamic Case

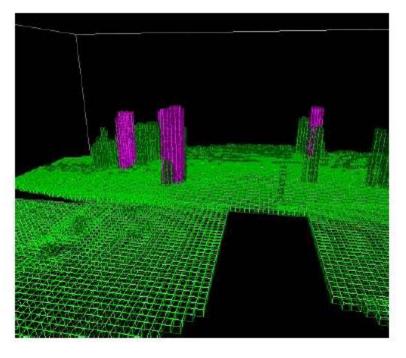




Results of ground surface identification among heavy brush.

Sample Data Set – Dynamic Case




Results of ground surface identification with sparse data.

Sample Data Set – Dynamic Case

original data colored by height

Green voxels represent the ground surface, dark green the brush, and purple the tree trunks.

Summary

- Task 1 Literature Review, complete
- Task 3 Site Visits
 - visits conducted
 - test highways identified
 - report to be written
- Task 2 Survey Lidar Units
 - candidates identified
 - one unit tested in the field
 - need to test two models before deciding on sensor
- Task 4 Data Collection & Identification
 - approach developed

